题解 | CF1295 / Educational Codeforces Round 81 (Div. 2)
题解 | CF1295 / Educational Codeforces Round 81 (Div. 2)
比赛链接
比赛的时候只做出来 A, B, C, D,然后 B 还 FST 了,菜死了
赛后参考 Tutorial,把不会做没时间做的 E, F 补起来了
官方的 Tutorial 真是个好东西,以下纯属翻译其实自己也写了一部分
A
没什么好说的,如果偶数就全输出 1,如果奇数就最高位输出 7,其它输出 1
代码:
int T;
int n;
int main()
{
io::read(T);
for (int _ = 0; _ < T; _++)
{
io::read(n);
if (n % 2 == 0)
{
for (int i = 0; i < n / 2; i++)
{
putchar('1');
}
putchar('\n');
}
else
{
putchar('7');
for (int i = 1; i < n / 2; i++)
{
putchar('1');
}
putchar('\n');
}
}
}
B
记长度为 i
的前缀为 pref(i)
。 我们可以注意到,当 k = ⌊i / n⌋
时,每个 pref(i) = k ⋅ pref(n) + pref(i mod n)
(这里的 +
是连接的意思)。 然后,长度为 i
的前缀的 bal(i)
等于 k ⋅ bal(n) + bal(i mod n)
。
现在有两种情况:bal(n)
等于或不等于 0
。 如果 bal(n) = 0
,则如果存在 j(0 ≤ j < n)
,使得 bal(j) = x
,那么对于每个 k ≥ 0
,bal(j + kn) = x
,答案为 -1
。
否则,对于每个这样的 j
,最多只能有一个 k
:因为方程 bal(j) + k ⋅ bal(n) = x
有零个或一个解。 当且仅当 x - bal(j) ≡ 0 (mod bal(n))
并且 k = x - bal(j) / bal(n) ≥ 0
时,该解才存在。 因此,仅需预先计算 bal(n)
,并针对每个 0 ≤ j < n
检查方程式。
代码:
int T;
int n, x;
constexpr int N = 1e5 + 5;
int one[N], zero[N];
vector<int> vec;
inline void init()
{
one[0] = 0;
zero[0] = 0;
vec.clear();
}
int main()
{
io::read(T);
for (int _ = 0; _ < T; _++)
{
init();
io::read(n, x);
for (int i = 1, u; i <= n; i++)
{
scanf("%1d", &u);
if (u == 1)
{
one[i] = one[i - 1] + 1;
zero[i] = zero[i - 1];
}
else
{
one[i] = one[i - 1];
zero[i] = zero[i - 1] + 1;
}
}
int tmp = zero[n] - one[n];
if (x == 0)
{
int cnt = 1;
for (int i = 1; i <= n; i++)
{
if (one[i] == zero[i])
{
cnt++;
}
}
if (tmp == 0)
{
io::writeln(-1);
}
else
{
io::writeln(cnt);
}
}
else
{
for (int i = 1; i <= n; i++)
{
if (tmp == 0)
{
if (x == zero[i] - one[i])
{
vec.emplace_back(i);
}
}
else if (tmp < 0)
{
if (x - (zero[i] - one[i]) < 0 && (zero[i] - one[i] - x) % (one[n] - zero[n]) == 0)
{
vec.emplace_back(i);
}
}
else if ((x - (zero[i] - one[i])) % tmp == 0 && x - (zero[i] - one[i]) >= 0)
{
vec.emplace_back(i);
}
}
int _cache = vec.size();
if (one[n] == zero[n] && _cache)
{
io::writeln(-1);
}
else
{
io::writeln(_cache);
}
}
}
}
C
如果 t
中包含 s
中不存在的字符,输出 −1
否则,预处理一个数组 nxt[i][j] = 从 i 到 |s| 范围内使得 s[x] = j 的最小下标 x
,如果不存在,nxt[i][j] = INF
.
然后简单贪心。假设现在 z = t[0]t[1]……t[i − 1]
,已经处理到位置 pos
。分两种情况:
- 如果
nxt[pos][i] ≠ INF
, 那么i++, pos = nxt[pos + 1][i]
- 如果
nxt[pos][i] = INF
, 那么pos = 0, ans++
(ans
一开始是0
)
代码:
constexpr int N = 1e5 + 5;
constexpr int CHARSET_SIZE = 26;
namespace sol
{
char s[N], t[N];
int bucket[CHARSET_SIZE];
vector<int> v[CHARSET_SIZE];
inline void init()
{
for (int i = 0; i < 26; i++)
{
v[i].clear();
}
mem(bucket);
}
inline int main()
{
init();
scanf("%s %s", s, t);
int len_s = strlen(s), len_t = strlen(t);
for (int i = 0; i < len_s; i++)
{
bucket[s[i] - 'a']++;
}
for (int i = 0; i < len_t; i++)
{
if (!bucket[t[i] - 'a'])
{
return -1;
}
}
for (int i = 0; i < len_s; i++)
{
v[s[i] - 'a'].emplace_back(i + 1);
}
int pos = 0, now = 0, res = 1;
while (pos != len_t)
{
int _cache = t[pos] - 'a';
int _t = upper_bound(v[_cache].begin(), v[_cache].end(), now) - v[_cache].begin();
if (_t == v[_cache].size())
{
res++;
now = 0;
}
else
{
now = v[_cache][_t];
pos++;
}
}
return res;
}
} // namespace sol
int T;
int main()
{
io::read(T);
for (int _ = 0; _ < T; _++)
{
io::writeln(sol::main());
}
}
D
设 g = gcd(a, m)
,m' = m / g
可以证明,结果就是欧拉函数 φ(m')
证明过程:
要使 gcd(a, m) = gcd(a + x, m) = g
,首先 x
是 g
的倍数,其次 x / g
和 m'
互质
设 a' = a / g
,x' = x / g
,原问题转换为求在 [a', a' + m')
的范围内和 m'
互质的数的个数
由辗转相除法的正确性,即求 φ(m')
但是队友我比较菜,在比赛时没有注意到一些性质,于是大力容斥了
导致没时间去水 E 题
代码:
constexpr int N = 100005;
constexpr int U = 100000;
ll prime[N], prime_cnt;
bitset<N> is_prime;
inline void check()
{
for (int i = 2; i <= U; i++)
{
if (!is_prime[i])
{
prime[++prime_cnt] = i;
}
for (int j = 1; j <= prime_cnt; j++)
{
if (i * prime[j] >= U)
{
break;
}
is_prime[i * prime[j]] = 1;
if (i % prime[j] == 0)
{
break;
}
}
}
}
vector<ll> vec, bucket[15];
void dfs(ll dep, ll sum, ll cnt, bool flag)
{
if (!flag)
{
bucket[sum].emplace_back(cnt);
}
if (dep == vec.size())
{
return;
}
dfs(dep + 1, sum + 1, cnt * vec[dep], 0);
dfs(dep + 1, sum, cnt, 1);
}
int T;
ll x, y;
inline void init()
{
for (int i = 0; i < 15; i++)
{
bucket[i].clear();
}
vec.clear();
}
int main()
{
check();
io::read(T);
for (int _ = 0; _ < T; _++)
{
init();
io::read(x, y);
ll GCD = _f::gcd(x, y);
y /= GCD;
ll xr = x / GCD + y, xl = x / GCD;
ll ans1 = xl, ans2 = xr;
for (int i = 1; i <= prime_cnt && y != 1; i++)
{
if (y % prime[i] == 0)
{
vec.emplace_back(prime[i]);
do
{
y /= prime[i];
} while (y % prime[i] == 0);
}
}
if (y != 1)
{
vec.emplace_back(y);
}
dfs(0, 0, 1, 0);
for (auto i = 1; i <= vec.size(); i++)
{
for (const auto &it : bucket[i])
{
if (i & 1)
{
ans1 -= xl / it;
ans2 -= xr / it;
}
else
{
ans1 += xl / it;
ans2 += xr / it;
}
}
}
io::writeln(ans2 - ans1);
}
}
E
写一颗线段树维护一下就好了
代码:
C int N = 2e5 + 5;
C ll INF = 1e18;
int n;
ll ans = INF;
namespace SegTree
{
C int TREE_SIZE = N * 4;
struct Tree
{
ll min_v, tag;
} tree[TREE_SIZE];
#define lson(x) ((x) << 1)
#define rson(x) ((x) << 1 | 1)
#define ls lson(rt)
#define rs rson(rt)
inline void push_up(int rt)
{
tree[rt].min_v = std::min(tree[ls].min_v, tree[rs].min_v);
}
inline void push_down(int rt, int l, int r)
{
if (tree[rt].tag)
{
tree[ls].min_v += tree[rt].tag;
tree[ls].tag += tree[rt].tag;
tree[rs].min_v += tree[rt].tag;
tree[rs].tag += tree[rt].tag;
tree[rt].tag = 0;
}
}
inline void modify(int rt, int l, int r, ll ml, ll mr, ll k)
{
if (ml <= l && r <= mr)
{
tree[rt].min_v += k;
tree[rt].tag += k;
return;
}
push_down(rt, l, r);
int mid = (l + r) >> 1;
if (ml <= mid)
{
modify(ls, l, mid, ml, mr, k);
}
if (mid < mr)
{
modify(rs, mid + 1, r, ml, mr, k);
}
push_up(rt);
}
inline ll query_min()
{
return tree[1].min_v;
}
#undef ls
#undef rs
#undef lson
#undef rson
} // namespace SegTree
ll a[N], p[N];
int main()
{
io::read(n);
io::readln(p + 1, p + n + 1);
io::readln(a + 1, a + n + 1);
for (R int i = 1; i <= n; i++)
{
SegTree::modify(1, 0, n, p[i], n, a[i]);
}
for (R int i = 1; i < n; i++)
{
SegTree::modify(1, 0, n, p[i], n, -a[i]);
SegTree::modify(1, 0, n, 0, p[i] - 1, a[i]);
ans = std::min(ans, SegTree::query_min());
}
io::writeln(ans);
}
F
咕咕咕,我只知道有一种神仙组合数学解法,然后出题人的做法被吊打了
代码:
C int MOD = 998244353;
inline int cal(int n, ll m)
{
int res = 1;
for (R int i = 1; i <= n; i++)
{
res = (ll)res * (n + m - i) % MOD * _f::pow(i, MOD - 2, MOD) % MOD;
}
return res;
}
C int N = 50 + 5;
int n;
int l[N], r[N];
int s[N * 2];
int a[N * 2][N * 2];
int main()
{
io::read(n);
int sz = 1;
for (R int i = 1; i <= n; i++)
{
io::read(l[i], r[i]);
s[(i << 1) - 1] = l[i];
s[i << 1] = ++r[i];
sz = (ll)sz * (r[i] - l[i]) % MOD;
}
sort(s + 1, s + n * 2 + 1);
int tot = unique(s + 1, s + n * 2 + 1) - (s + 1);
for (R int i = 1; i <= n; i++)
{
l[i] = lower_bound(s + 1, s + tot + 1, l[i]) - s;
r[i] = lower_bound(s + 1, s + tot + 1, r[i]) - s;
}
for (R int i = 1; i <= tot + 1; i++)
{
a[0][i] = 1;
}
for (R int i = 1; i <= n; i++)
{
for (R int j = l[i]; j <= r[i] - 1; j++)
{
for (R int k = i - 1; k >= 0; k--)
{
a[i][j] = (a[i][j] + (ll)a[k][j + 1] * cal(i - k, s[j + 1] - s[j])) % MOD;
if (l[k] > j || r[k] <= j)
{
break;
}
}
}
for (R int j = tot; j >= 1; j--)
{
a[i][j] = (a[i][j] + a[i][j + 1]) % MOD;
}
}
io::writeln((ll)a[n][1] * _f::pow(sz, MOD - 2, MOD) % MOD);
}
公共头
(这几天对公共头进行了小调整,以下是新的公共头,配合老代码使用可能出现小概率 CE 等情况,概不负责)
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
#include "bits/stdc++.h"
#define mem(x) memset((x), 0, sizeof((x)))
#define il __attribute__((always_inline))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
#if __cplusplus > 201403L
#define R
#else
#define R register
#endif
#if __cplusplus >= 201103L
#define C constexpr
#else
#define C const
#endif
namespace _c
{
C double pi = 3.141592653589793;
namespace min
{
C int i8 = -128;
C int i16 = -32768;
C int i = -2147483647 - 1;
C ll l = -9223372036854775807LL - 1;
} // namespace min
namespace max
{
C int i8 = 127;
C int i16 = 32767;
C int i = 2147483647;
C ll l = 9223372036854775807LL;
} // namespace max
} // namespace _c
namespace _f
{
template <typename Tp>
inline Tp gcd(Tp x, Tp y)
{
while (y != 0)
{
Tp t = x % y;
x = y;
y = t;
}
return x;
}
template <typename Tp>
inline Tp abs(const Tp &a)
{
return a > 0 ? a : -a;
}
template <typename Bp, typename Ep>
inline Bp pow(Bp a, Ep b)
{
R Bp res = 1;
while (b > 0)
{
if (b & 1)
{
res *= a;
}
a *= a;
b >>= 1;
}
return res;
}
template <typename Bp, typename Ep, typename Mp>
inline Mp pow(Bp a, Ep b, const Mp &m)
{
a %= m;
R Mp res = 1;
while (b > 0)
{
if (b & 1)
{
res = ((ll)res * a) % m;
}
a = ((ll)a * a) % m;
b >>= 1;
}
return res % m;
}
} // namespace _f
namespace io
{
template <typename Tp>
inline void read(Tp &x)
{
static bool neg;
static char c;
x = 0, neg = 0, c = getchar();
for (; !isdigit(c); c = getchar())
{
if (c == '-')
{
neg = 1;
}
}
for (; isdigit(c); c = getchar())
{
x = x * 10 + c - '0';
}
if (neg)
{
x = -x;
}
}
template <typename Tp>
inline Tp read()
{
R Tp res;
read(res);
return res;
}
template <typename Tp>
inline void readln(const Tp first, const Tp last)
{
for (R Tp it = first; it != last; it++)
{
read(*it);
}
}
template <typename Tp>
inline void _write(Tp x)
{
if (x < 0)
{
putchar('-');
x = -x;
}
if (x > 9)
{
_write(x / 10);
}
putchar(x % 10 + '0');
}
template <typename Tp>
inline void write(const Tp &x, const char &sep = ' ')
{
_write(x);
putchar(sep);
}
template <typename Tp>
inline void writeln(const Tp &x)
{
write(x, '\n');
}
template <typename Tp>
inline void writeln(const Tp first, const Tp last, const char &sep = ' ', const char &ends = '\n')
{
for (R Tp it = first; it != last; it++)
{
write(*it, sep);
}
putchar(ends);
}
#if __cplusplus >= 201103L
template <typename Tp, typename... Args>
inline void read(Tp &x, Args &... args)
{
read(x);
read(args...);
}
#endif
} // namespace io